Function Domains and Frænkel Operator
نویسنده
چکیده
We deal with a non–empty set of functions and a non– empty set of functions from a set A to a non–empty set B. In the case when B is a non–empty set, B is redefined. It yields a non–empty set of functions from A to B. An element of such a set is redefined as a function from A to B. Some theorems concerning these concepts are proved, as well as a number of schemes dealing with infinity and the Axiom of Choice. The article contains a number of schemes allowing for simple logical transformations related to terms constructed with the Frænkel Operator.
منابع مشابه
On a subclass of multivalent analytic functions associated with an extended fractional differintegral operator
Making use of an extended fractional differintegral operator ( introduced recently by Patel and Mishra), we introduce a new subclass of multivalent analytic functions and investigate certain interesting properties of this subclass.
متن کاملCoefficient bounds for a new class of univalent functions involving Salagean operator and the modified Sigmoid function
We define a new subclass of univalent function based on Salagean differential operator and obtained the initial Taylor coefficients using the techniques of Briot-Bouquet differential subordination in association with the modified sigmoid function. Further we obtain the classical Fekete-Szego inequality results.
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملA new class of function spaces on domains of R^d and its relations to classical function spaces
متن کامل
Ozaki's conditions for general integral operator
Assume that $mathbb{D}$ is the open unit disk. Applying Ozaki's conditions, we consider two classes of locally univalent, which denote by $mathcal{G}(alpha)$ and $mathcal{F}(mu)$ as follows begin{equation*} mathcal{G}(alpha):=left{fin mathcal{A}:mathfrak{Re}left( 1+frac{zf^{prime prime }(z)}{f^{prime }(z)}right) <1+frac{alpha }{2},quad 0<alphaleq1right}, end{equation*} and begin{equation*} ma...
متن کامل